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We study the reduced fidelity susceptibility �r for an M-body subsystem of an N-body Lipkin-Meshkov-
Glick model with �=M /N fixed. The reduced fidelity susceptibility can be viewed as the response of subsystem
to a certain parameter. In noncritical region, the inner correlation of the system is weak, and �r behaves similar
with the global fidelity susceptibility �g, the ratio �=�r /�g depends on � but not on N. However, at the critical
point, the inner correlation tends to be divergent, and we find �r approaches �g with increasing the N. It is
interesting to note that, �=1 in the thermodynamic limit, which means the susceptibilities of the local and
global system are the same. Finally, we make numerical computations, and they are in perfect agreement with
the analytical predictions.
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I. INTRODUCTION

Quantum phase transition �QPT� �1�, which occurs at ab-
solutely zero temperature, is driven purely by quantum
fluctuations. It was studied conventionally by Landau
paradigm with order parameter in the frame of statistics
and condensed-matter physics. Recently, two quantum-
information �2� concepts, entanglement �3–13�, and fidelity
�14–28� have been investigated extensively in QPTs and are
recognized to be effective and powerful in detecting the criti-
cal point. The former measures quantum correlations be-
tween partitions, while the latter measures the distance in
quantum state space. Therefore, their success in characteriz-
ing QPTs is understood by regarding the universality of the
critical behaviors itself, that is, the divergent of the correla-
tion and the dramatic change in the ground-state structure.
Furthermore, as the fidelity depends computationally on an
arbitrarily small change in the driving parameter, Zarnardi et
al. suggested the Riemannian metric tensor �18�, while You
et al. suggested the fidelity susceptibility �19�; both focus on
the leading term of the fidelity. In the following, we mainly
consider the fidelity susceptibility �FS�.

Until now, most efforts have been devoted to the study of
the global ground-state fidelity susceptibility �GFS�, denoted
by �g, which reflects the susceptibility of the system in re-
sponse to the change in certain driving parameter. In this
work, we study the responses of a subsystem, for which we
study its FS, the so-called reduced fidelity susceptibility
�RFS�, denoted by �r. Some special cases have been studied
in Refs. �20,26–29�, where the subsystems are only one body
or two body, while in this paper we will study an arbitrary
M-body subsystem. The motivation for the investigation of
RFS is clear in physics. First, it reveals information about the
change in the inner structure for a system that undergoes
QPT. Second, as the existence of interactions and correla-
tions, a general quantum system is not the simple addition of
its different parts, especially in the critical region, where the

entanglement entropy is divergent �5,6,10�. Therefore it is
significant to investigate the behavior of the RFS, as well as
the effects of entanglement on it, in both critical and non-
critical regions. And our study can be viewed as a connection
between the FS and the entanglement entropy.

To study this question, we consider an N-body Lipkin-
Meshkov-Glick model �LMG� �30� model, and study the
RFS for its M-body subsystem. As 0��r��g �28�, we con-
sider a more useful quantity, �=�r /�g, and thus �� �0,1�.
We find that, the behaviors of the RFS, as well as �, are quite
different in noncritical and critical regions. In noncritical re-
gion, the entanglement entropy is saturated by a finite upper
bound, and the inner correlation is small, thus the RFS be-
haves similar with the GFS, and the ratio � depends on �
=M /N but not N. However, at the critical point, the entangle-
ment entropy tends to be divergent with the increase in sys-
tem size, and the inner correlations are very strong. Then we
find the RFS approaches GFS with the increase in N, and
�=1 in the thermodynamic limit for ��0. These can be
understood by considering the divergent of correlation in
second-order QPTs, which is reflected by the entanglement
entropy.

This paper is organized as follows: in Sec. II, we present
the LMG model and give a brief review of the GFS studied
in Ref. �27�. Then in Sec. III, we derive the RFS in the
thermodynamic limit and obtain its divergent form in the
vicinity of the critical point. Then we perform some numeri-
cal computations, and the results are in perfect agreement
with our analytical prediction.

II. LMG MODEL AND GLOBAL FIDELITY
SUSCEPTIBILITY

The LMG model was originally introduced in nuclear
physics and has found applications in a broad range of other
topics: statistical mechanics of quantum spin system �31�,
Bose-Einstein condensates �32�, or magnetic molecules such
as Mn12 acetate �33�, as well as quantum entanglement �34�,
and quantum fidelity �27,28�. It is an exactly solvable �35,36�
many-body interacting quantum system as well as one of the
simplest to show a quantum transition in the regime of strong
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coupling. The quantum phase transition of this model can be
described by the symmetry broken mechanism, the two
phases are associated with either collective or single-particle
behavior. The Hamiltonian of the LMG model reads

H = −
�

N
�Sx

2 + �Sy
2� − hSz, �1�

where S�=�i=1
N 	�

i /2 ��=x ,y ,z� are the collective spin opera-
tors; 	�

i are the Pauli matrices; N is the total spin number; �
is the anisotropic parameter. � and h are the spin-spin inter-
action strength and the effective external field, respectively.
Here, we focus on the ferromagnetic case ��
0�, and with-
out loss of generality, we set �=1 and 0���1. As the
spectrum is invariant under the transform h↔−h, we only
consider h�0. This system undergoes a second-order QPT at
h=1, between a symmetric �polarized, h
1� phase and a
broken �collective, h�1� phase, which is well described by a
mean-field approach �37�. The classical state is fully polar-

ized in the field direction ��	z
i�=1� for h
1, and is twofold

degenerate with �	z
i�=h for h�1.

Before deriving the RFS, we give a brief review of the
GFS and its application in the LMG model �27�. Just as the
specific heat is a thermal response function, GFS can be
viewed as a response function for the ground state with re-
spect to the external driving parameter. As the ground state is
a pure state, the fidelity between two ground states is just
their overlap

F = ��
�h��
�h + �h��� , �2�

where �
�h�� is the ground state and h is the driving param-
eter. If �h is small, the above fidelity can be expanded to the
second order of �h, F=1−���h�2 /2, the first-order term is
zero due to the normalization of states �19�. Therefore, the
GFS can be evaluated with standard perturbation method, as
presented in Ref. �27�; the authors employed the Holstein-
Primakoff transform and derived the GFS for both phases in
the thermodynamic limit,

�g�h,�� = 	
N

4
�1 − h2��1 − ��
+

h2�h2 − ��2

32�1 − ��2�1 − h2�2 , for 0 � h � 1,

�1 − ��2

32�h − ��2�h − 1�2 , for h � 1. � �3�

It has been found that, when h�1, the GFS increases with N
and can be viewed as an extensive quantity. However, when
h
1 the GFS is saturated with an upper bound, i.e., it is
intensive.

III. REDUCED FIDELITY SUSCEPTIBILITY

A. Thermodynamic limit

Now we give some basic formulas for fidelity and its
susceptibility. In fact, there is no difference between GFS
and RFS in mathematical definitions, they are both leading
terms of the fidelity. However, since the subsystem is repre-
sented by a mixed state, we should use a more general form
fidelity, the Uhlmann fidelity �43�,

F��, �̃� � tr
�1/2�̃�1/2, �4�

where ����h� and �̃���h+�h� with a certain parameter h.
When � and �̃ are pure states, it returns to Eq. �2�. If �h tends
to zero, the two states are close in parameter space, and their
Bures distance �42� is,

dsB
2 = 2�1 − F��, �̃�� . �5�

In the basis of �, denoted by 
�
i��, the Bures distance can be
written as �44�

dsB
2 =

1

4�
n=1

N
dpn

2

pn
+

1

2 �
n�m

N
�pn − pm�2

pn + pm
��
n�d
m��2, �6�

where pi are the eigenvalues of � and N is the dimension of
�. As FS is the leading term of fidelity, i.e., F=1
−���h�2 /2, we can get FS for h immediately,

��h� =
1

4�
n=1

N
��hpn�2

pn
+

1

2 �
n�m

N
�pn − pm�2

pn + pm
��
n��h
m��2, �7�

where �hª� /�h. In our study, � and �̃ are just the reduced
density matrices for ground states.

In the following, the N-body system is divided into two
parts, A and B with size M and N−M, respectively. Without
loss of generality, we will study the RFS for subsystem A,
the reduced density matrix is �A. This study would give a
connection between the RFS and the entanglement entropy
�10�. As we know, the entanglement reflects the correlation
among inner partitions, and our study will reveal the effects
of these correlations on RFS, especially at the critical point.

Now we introduce the total spin operators for the two
subsystems, S�

A,B=�i�A,B	�
i /2. To describe quantum fluctua-

tions, it is convenient to use the Holstein-Primakoff repre-
sentation of the spin operators �38�, and the first step is to
rotate the z axis along the semiclassical magnetization
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�Sx

Sy

Sz
� = � cos �0 0 sin �0

0 1 0

− sin �0 0 cos �0
��S̃x

S̃y

S̃z

� . �8�

As presented in Ref. �37�, �0=0 for h
1 so that S= S̃, and
�0=arccos h for h�1. The Holstein-Primakoff representa-
tion is then applied to the rotated spin operators

S̃z
A = M/2 − a†a ,

S̃−
A = 
Ma†
1 − a†a/M = �S̃+

A�†,

S̃z
B = �N − M�/2 − b†b ,

S̃−
B = 
N − Mb†
1 − b†b/�N − M� = �S̃+

B�†, �9�

where a�a†� and b�b†� are bosonic creation and annihilation
operators for subsystem A and B, respectively, and S�

A,B

=Sx
A,B� iSy

A,B. After this transform, the LMG Hamiltonian is
mapped onto a system of two interacting bosonic modes a
and b. For fixed �=M /N, the Hamiltonian can be expanded
in 1 /N. Up to the order �1 /N�0, one gets H=NH�−1�+H�0�

+O�1 /N� with H�−1�= �m2−1−2h� /4, where m=cos �0, and

H�0� = −
1 + �

4
+ A†VAT +

1

2
�A†W�A†�T + h.c.� , �10�

where A= �a ,b�, and

V =
2hm + 2 − 3m2 − �

2
I

W =
� − m2

2
� � 
��1 − ��

��1 − �� 1 − �

� , �11�

where I is a 2�2 identity matrix; m=h in broken phase and
m=1 in symmetric phase. The bosonic Hamiltonian can be
diagonalized by Bogoliubov transform, and we will see that
it is useful in deriving the reduced density matrix. As shown
in Refs. �39–41�, the reduced density matrix for eigenstates
of a quadratic form can always be written as �A=e−H with

H = �0 + �1a†a + �2�a†2 + a2� . �12�

�i �i=0,1 ,2� can be determined by using �10�

tr �A = 1,tr��Aa†a� = �a†a� and tr��Aa†2� = �a†2� ,

�13�

where ���= �
g���
g�, �
g� is the ground state, Then we can
diagonalize �A by Bogoliubov transform. However, in this
paper we will adopt another method to diagonalize �A, as
shown in Ref. �11�, �A is written in the bosonic coherent-
state representation

����A���� = K exp�1

4
��� + ���

G++ − 1

G++ + 1
��� + ����

� exp�1

4
��� − ���

G−− + 1

G−− − 1
��� − ���� ,

where a���=����; K=
�1+G++��1−G−−� is determined by
the normalization of �A; G++ and G−− are Green’s functions
defined as

G++ = ��a† + a�2� ,

G−− = ��a† − a�2� . �14�

Then �A can be diagonalized by the following Bogoliubov
transform:

g = cosh �a + sinh �a† =
P + Q

2
a +

P − Q

2
a†, �15�

with PQ=1, PG++=�Q, and QG−−=−�P. The Green’s func-
tions can be obtained by diagonalizing the bosonic repre-
sented by Hamiltonian �10�,

G++ = 1 + �1/� − 1�� ,

G−− = �1 − ��� − 1, �16�

where

� =	

h − 1

h − �
for h � 1,


1 − h2

1 − �
for 0 � h � 1.� �17�

The diagonalized �A reads

�A =
2

� + 1
e−�g†g, �18�

where the pseudoenergy �=ln���+1� / ��−1�� with �
=�−1/2
���+ �1−�����+��1−���.

Now we can derive the RFS �7�, of which the first term
involves only the eigenvalues of �A, and the second term
involves both the eigenvalues and the eigenvectors. The
eigenvectors of �A is the number state �n� :g†g�n�=n�n�, and
the term ��
n ��h
m��2= ��n ��hm��2 can be calculated as

��n��hm��2 =
��n��h�g†g��m��2

�m − n�2 . �19�

Therefore, we can write the RFS explicitly,

�r�h,�,�� =
��h��2

4��2 − 1�
+

���h��2

�2 + 1
+

N�

4�
��h�0 exp ��2,

�20�

where �=arctanh���−G++� / ��+G++��, �0=arccos h for h
�1 and �0�0 for h
1. Thus the last term of the above
expression only takes effect in the broken phase. We empha-
size that, in the broken phase h�1, we should perform a
rotation �8� at first.

We can also express the RFS as
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�r�h,�,�� = 	� +
N�

4G++�1 − h2�
for 0 � h � 1,

� for h � 1,
�

�21�

where

� =
��h��2

4��2 − 1�
+

�2

4��2 + 1���h ln�−
�

G++��2

. �22�

In the vicinity of the critical point, the RFS diverges as

�r/N � �1 − h�−1/2,for 0 � h � 1, �23�

�r � �1 − h�−2,for h � 1, �24�

and this is the same with �g. Additionally, we show the en-
tanglement entropy E=−tr�� ln �� that was derived in
�10,11�,

E =
� + 1

2
ln

� + 1

2
−

� − 1

2
ln

� − 1

2
+ x ln 2, �25�

where x=1 when h�1 and x=0 when h
1, the ln 2 term
comes from the twofold degeneracy of the ground state in
the broken phase, and this degeneracy is lifted for finite N.
The entanglement entropy diverges as �1 /4�ln�h−1� around
the critical point, and is nearly independent with N in non-
critical region.

B. Finite-size cases

To perform numerical computations, we should derive the
reduced density matrix for �A in finite-size case. The LMG
model is of high symmetry in interaction, and the ground
state which is the superposition of the Dick states lies in the
J=N /2 section

�
g� = �
m=0

N

Cm�J,− J + m� , �26�

where Cm is the coefficient to be determined numerically. We
hope to write �J ,−J+m� in the form of �JA ,mA��JB ,mB�,
where JA=M /2 and JB= �N−M� /2 correspond to the
two local systems. Since �J ,−J+m�
=
�2J−m� ! / �2J� !m!�S+�m�J ,−J�, and the ladder operator
S+=S+

A+S−
B. Then the ground state is

�
g� = �
m=0

N

�
p=0

2JA

Cm

H�p;2J,2JA,m��JA,− JA + p� � �JB,− JB

+ m − p� , �27�

where

H�p;2j,2j1,m� =
�2j1

p
�� 2j2

m − p
�

�2j

m
� �28�

is the so-called Hypergeometric distribution function. And
the matrix element of �A is

��A�p,q = �
m=0

N

CmCq+m−p
� 
H�p;2J,2JA,m�

� 
H�q;2J,2JA,q + m − p� . �29�

By using the exact diagonalization method, the RFS as a
function of h for fixed � is computed and shown in Fig. 1. As
one can see, the peaks of the RFS approach the critical point
and become sharper and sharper with the increase in N. The
RFS in the symmetric phase �h
1� has an upper bound;
however, in the broken phase �h�1� the RFS increases with
the total spin number N. Thus we address that the RFS is
extensive in the broken phase, in which the LMG model is of
collective behavior while it is intensive in the symmetric
phase, in which the LMG model behaves like a single par-
ticle. This is similar with the GFS �27�.

As 0��r��g, we present a more significative quantity
��� ,h���r�h ,� ,�� /�g�h ,�� and focus on its properties in
critical and noncritical regions. With Eqs. �3� and �20�, we
find that in the thermodynamic limit

lim
h→1

���,h� = 1, �30�

for any nonvanishing �. To verify our prediction, we show
the analytical and numerical results in Fig. 2. As one can see,
at the critical point, the RFS approaches the global one, i.e.,
� tends to one, and at the same time, the entanglement en-
tropy, i.e., the inner correlation between subsystems A and B,
is divergent with the increase in N. When h is away from the
critical region, the inner correlation decreases dramatically,
and then � depends on � but not the total system size N as
shown in Fig. 3.

As demonstrated in Ref. �28�, when there are no correla-
tions between partitions of a system, for example, an N-body
system represented by a product state that reads

�
�h�� = �
i=1

N

��i�h�� , �31�

if we denote a one-body reduced fidelity as Fr, the relation
between the global and the reduced fidelities is

0
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7000

8000

0.8 0.85 0.9 0.95 1 1.05 1.1

χ(
τ=

1/
2)

h

N=512
N=1024
N=2048

FIG. 1. �Color online� RFS as a function of h at �=1 /2 and �
=1 /2. The peaks approach the critical point and become sharper
and sharper with the increase in N.
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Fg�h,�� = �
i=1

n

Fr
i�h,�� , �32�

and thus we have �g=�i=1
N �r

i ; moreover, if the system is of
translation symmetry, we have �g=N�r. If there is entangle-
ment between partitions, we have no such results, especially
in the critical point, the entanglement is divergent, and then
�g /�r=1 in the thermodynamic limit. This is some kind of
effect of the inner correlations on the susceptibility of the
system states. However, we address that our results are based
on a high-dimension model, in which the interaction is infi-
nite range. We think it deserved to study the RFS for a con-
tiguous block in a low-dimension model, for example, the
XY model in which the interaction is just between neighbor-

ing sites. Thus the correlation between a block and its
complementary part takes effect only at the boundary, and
the results for � may be different.

IV. CONCLUSION

In conclusion, we derive the RFS analytically in the ther-
modynamic limit for a fixed �. To analyze the effects of the
inner correlations on the RFS, we study the ratio �=�r /�g
combined with the entanglement entropy in both critical and
noncritical regions. Our results give a clear picture for un-
derstanding the effects of correlations on the response. In the
critical region, with the increase in N, the entanglement en-
tropy tends to be divergent and � approaches 1, while in the
thermodynamic limit, ��1 for ��0. This indicates that the
sensitivity of the subsystem is equal to the global one at the
critical point, where the correlation is very strong. In non-
critical region, the RFS behaves similarly with the GFS, and
� depends on � but not on N.
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